论文部分内容阅读
为准确预测苹果糖度,基于傅里叶变换近红外光谱、偏最小二乘法和深度学习技术,建立了不同的苹果糖度预测模型。使用傅里叶变换近红外光谱仪和折光仪采集160个苹果的光谱与糖度信息,建立不同光谱预处理方法的偏最小二乘法(Partial least square,PLS)模型,通过常用的竞争性自适应重加权算法减少PLS模型计算量,对比得到最好的PLS模型预测精度;使用深度学习的MobileNetV2网络构建苹果糖度预测模型,调整最适合的模型构建参数。试验结果表明:经过标准正态变量变换(Standard normal