岭回归中基于广义交叉核实法的最优模型平均估计

来源 :系统科学与数学 | 被引量 : 0次 | 上传用户:liu55166
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
岭回归是一种常用的用于克服多重共线性的压缩估计方法.文章在存在异方差的背景下,考察了组合不同岭参数下岭估计量的模型平均方法,并在广义交叉核实法的框架下构造了相应的权重选择准则.当拟合模型的设定存在偏误时,证明了基于广义交叉核实法的模型平均法可以给出渐近最优的预测.此外,使用蒙特卡洛模拟考察了所提出的模型平均方法在有限样本下的有效性.最终,使用所提出的方法对一组乙炔反应工艺的数据进行了分析,所得到的结论进一步表明,模型平均法在实际数据分析工作中具有较高应用价值.
其他文献