基于梯度提升决策模型的空间占用检测研究

来源 :计算机应用研究 | 被引量 : 1次 | 上传用户:masterwhl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着绿色建筑和绿色生态城区经济激励机制基本形成,面对大量多维空间占用数据,大数据绿色建筑节能体系应运而生。然而大量多维的建筑数据却没有被充分利用,且传统空间占用检测模型分类精度还不够准确,模型时间复杂度较高。利用UCI占用检测数据集,在原始数据集上加入时间戳,使模型分类精度均获得提高,同时利用MCMR(最大相关最小冗余)方法进行特征选择,通过随机森林作为分类器验证分类效果,获取最优特征子集。利用选取的特征子集构建占用检测模型,其中XGBoost模型与随机森林模型(RF)进行比对,分类精度较高,且时间
其他文献
针对机器人导航无迹快速同步定位与地图构建(Unscented Fast SLAM)算法由于重采样造成样本粒子退化,进而导致估计精度下降的问题,提出一种基于自适应渐消无迹粒子滤波的Unscented Fast SLAM算法。该算法将无迹粒子滤波与渐消滤波相融合产生自适应建议分布函数,同时将粒子根据权值进行优化组合,仅对组合后的部分不稳定的粒子进行系统重采样。通过这两方面使得系统在具有高度自适应性的同