基于注意力机制和Retinex的低照度图像增强方法

来源 :激光与光电子学进展 | 被引量 : 2次 | 上传用户:wangligang987123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
低照度图像增强的主要目的是提升图像的整体光照度,进而呈现更多有用的信息。针对低照度图像的整体照度低、对比度弱和噪声较高的问题,提出基于注意力机制和Retinex算法的低照度图像增强方法。该方法首先将低照度图像分解为不变性反射图和缓变平滑性光照图;再通过注意力机制提取图像的空间和局部物体信息,从而能够保证增强过程中利用空间和局部物体信息进行约束;同时增加色彩损失函数改善图像饱和度,用以补偿和校准增强过程中的对比度细节;改进低照度图像和合成方法,加入真实噪声有效扩充训练数据集。最终在LOL和SID数据集
其他文献
为探索纳秒激光直接诱导不锈钢金属表面着色的工艺参数,利用纳秒激光诱导不锈钢表面着色,获得了深蓝色、黑色、灰色、粉红、绿色、紫色、金色、黄色、棕红色等多种颜色,其中
鸡西矿业集团公司张辰煤矿西三采区3
期刊
在脊椎CT图像分割问题中,由于脊椎与组织对比度过低和噪声的影响,传统分割算法存在分割精度差和自动化程度低等问题。基于此,提出一种通过AttentionNet定位脊椎,然后使用改进的DenseUnet进行脊椎CT分割的方法。首先,对所有脊椎CT样本数据进行裁剪、重采样、灰度值归一化等预处理操作;再次,对样本使用AttentionNet训练得到具有位置信息的Attention图;然后,对传统Dense