论文部分内容阅读
基于隐私保护的分类挖掘是近年来数据挖掘领域的热点之一,如何对原始真实数据进行变换,然后在变换后的数据集上构造判定树是研究的重点.基于转移概率矩阵提出了一个新颖的基于隐私保护的分类挖掘算法,可以适用于非字符型数据(布尔类型、分类类型和数字类型)和非均匀分布的原始数据,可以变换标签属性.实验表明该算法在变换后的数据集上构造的分类树具有较高的精度.