基于2DPCA与稀疏表示的目标跟踪

来源 :传感器与微系统 | 被引量 : 6次 | 上传用户:playallprogram
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高目标跟踪的准确性,针对目标跟踪过程中光照变化、遮挡、姿势变化等问题,提出了基于二维主成分分析(2DPCA)与稀疏表示的目标跟踪算法。在贝叶斯框架中使用了2DPCA与L2规范化呈现快速与鲁棒的目标跟踪算法。提出了新的似然函数表示方法,同时采用增量子空间学习的方法对冗余字典进行更新,有效抑制了跟踪漂移并能处理目标遮挡问题。通过对具有挑战性的跟踪视频进行定性和定量分析,实验结果证明:跟踪方法在跟踪精度上优于传统方法。
其他文献
为了增加弦乐器演奏时欣赏者的视听享受,在不影响弦乐器音效的前提下,采用振动传感器检测琴弦的振动信号,并通过电荷放大器隔离放大,经过有源滤波器滤波后输出,驱动安装在弦乐器上
传统谱聚类算法直接对原始数据建立高斯核邻接矩阵后再对数据进行聚类,并未考虑数据的深层次特征以及数据的邻域流形结构,并且仅进行单一聚类,针对以上三点不足,提出了利用稀
针对聚合通道特征(ACF)算法中行人外观轮廓不稳定导致检测率下降的问题,使用快速边缘检测检测出待检测图像的边缘图;用边缘图代替ACF算法图像通道中的梯度幅值通道,获取较稳定的行人轮廓信息;采用准确率较高的Real Adaboost分类器提高分类准确性。仿真实验结果表明:算法相对于原ACF算法误检窗口减少,检测精度提升,漏检率在INRIA,Caltech数据库上分别降低了5.1%和14.8%。