论文部分内容阅读
针对电网中录波型故障指示器上传的海量故障数据存在着大量的重复、干扰、错误及无效波形,提出一种基于稀疏自编码(sparse auto-encoder,SAE)的故障数据聚类清洗方法,该方法首先利用稀疏自编码对故障数据进行特征学习与降维,继而用主成分分析(principal component analysis,PCA)对降维后数据再次进行降维提取,实现对不同故障数据的特征获取;最后利用基于密度峰快速搜寻聚类算法(clustering by fast search and find of density pe