论文部分内容阅读
基于Radon变换在一定意义上具有能量特征,结合增强的步态能量图(EGEI),将两种形式的能量特征相融合来进行步态识别。对经过预处理后的周期图像合成EGEI,运用行列相结合的二维主成分分析((2D)2PCA)方法降低特征向量维数。同样,对步态序列图像进行Radon变换,构造周期模板后用主成分分析(PCA)方法降维。识别时将两种特征使用决策层融合的方法获得最终结果。通过在CASIA步态数据库上进行实验,证明以上方法具有较高的识别性能。