论文部分内容阅读
养殖水质对水产养殖的产出和收益具有非常重要的影响,提前预测水质状况可以提高治理水平,从而减少水产养殖的损失。以南美白对虾(俗称白肢虾)日常养殖水质为研究对象,选取温度(T)、pH、溶氧(DO)、盐度、氧化还原电位(ORP)、亚硝酸盐氮(NO-2^-N)和氨氮(NH+4^-N)作为水质数据特征,提出基于局部化双向LSTM(CovBiLSTM)和状态转移约束的水质预测模型(CovBiLSTMST)。首先使用双向LSTM网络接收历史水质数据序列信息的输入,然后利用卷积函数和最大池化技术(Max pooling)