论文部分内容阅读
为准确判断设备运行状态和充分挖掘分析数据价值,本文设计了一种基于密度聚类、无监督学习和时间循环神经网络的设备数据清洗方法.通过双重判据进行异常数据检测,针对变电站多维监测数据中参数间相关性难以确定的问题,采用无监督聚类方法对参数间相关性进行简化,得到异常点;再利用自组织特征映射神经网络挖掘符合自回归模型的历史数据的潜在特征,将在线数据随时间动态变化规律用转移概率值表示,确定异常数据类型及发生时间;然后采用时间循环神经网络将异常数据中的“脏数据”修正,并将处理后的数据入库;最后,通过实例验证了方法的可行性,表明该方法能快速检测和处理设备状态数据的各种情况,实现了变电站设备状态数据的实时监控和个性化清洗.