基于改进的局部近邻标准化和kNN的多阶段过程故障检测

来源 :计算机应用 | 被引量 : 2次 | 上传用户:dashanLau
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对多阶段过程数据具有多中心和各工序结构不同的特征问题,提出了一种基于改进的局部近邻标准化和k近邻的故障检测(ILNS-kNN)方法。首先寻找样本的前k个近邻样本的前K局部近邻集;其次使用局部近邻集的均值和标准差来标准化样本,获得标准样本;最后在标准样本集上计算样本的累积近邻距离作为检测指标进行故障检测。改进的局部近邻标准化(ILNS)将各阶段数据的中心平移到原点,并且调整各阶段数据的离散程度,使之近似相等,从而将多阶段过程数据融合为服从单一多元高斯分布的单阶段数据。进行了青霉素发酵过程故障检测实验
其他文献
针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种结合非局部均值模糊扩散和扩展邻域双边滤波的中值先验(MP)重建算法。首先,使用基于非局部均值模糊扩散