基于MV-PearlNet的珍珠细粒度分类方法

来源 :小型微型计算机系统 | 被引量 : 2次 | 上传用户:wuyuetian530
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出多视图卷积神经网络模型MV-PearlNet,替代人工进行细粒度珍珠分类.该模型采用并行化处理方式,针对珍珠的多个视角图片提取特征,可提升珍珠图片的特征提取效果,并且采用中间层特征融合作为珍珠的特征表达.在训练集数据量有限的情况下,通过MV-PearlNet结合K-means方法,将无监督聚类算法应用到提取得到的特征中,并利用相似度计算完成自动类标学习,这些操作起到了扩充数据集的作用,有助于改善深度分类模型因为训练集不足导致的欠拟合问题,可提高模型的分类准确率.实验结果表明,相比于主流卷积神经网
其他文献
在拥有海量数据和强大计算能力的人工智能时代,音频场景分类成为了场景理解的重要研究内容之一.针对音频场景分类建模困难和精确率不高的问题,本文提出一种基于卷积神经网络
为了提高二维复杂场景下多人姿态估计准确度和速度,提出了一种Mobile-YOLOv3模型与多尺度特征融合全卷积网络相结合的自顶向下多人姿态估计方法.利用深度可分离卷积改进YOLOv3网络以作为高效的人体目标检测器.针对网络特征下采样过程中上层高分辨率信息不断遗失问题,在经典U型网络结构中嵌入多尺度特征融合模块,从而使网络中的低尺度特征也包含高分辨率信息,并在特征融合模块中引入通道注意力机制,进一步
通过生成对抗网络的对抗学习生成仿真图像,已成为人工智能领域的一个研究热点.为了进一步提高生成图像的质量,本文提出了多判别器协同合作的网络框架——采用多个判别器为唯一生成器提供联合损失量,并通过不同的学习率保持各个判别器的差异性.同时,为了满足判别器的Lipschitz连续条件,本文所有的判别器网络一律进行谱归一化操作.实验表明,本文提出的基于多判别器合作框架的生成对抗网络表现较优.
京城6月的这次冰雹给许多车主带来了轻重不等的损失,各大财产保险公司门庭若市,许多车主都通过车辆损失险获得了赔付。但这并不意味着所有自然事故造成的车辆损失都可以顺理成章地得到赔付,为了顺利理赔,车主有必要深入了解车辆损失险这一主要车险。    保障范围    尽管各家保险公司对车辆损失险条款的规定不尽相同,但大体上保险条款中的保险责任及免除责任相同,车主要了然于胸。    保险责任    保险责任即
实例分割是一项具有挑战性的任务,需要同时进行实例级和像素级的预测,在自动驾驶、视频分析、场景理解等方面应用广泛.近年来,基于深度学习的实例分割方法迅速发展,如两阶段检测器Faster R-CNN扩展出的聚焦于网络的精度而非速度的强大实例分割基准Mask R-CNN,一度成为实例分割的标杆.利用高速检测的单阶段检测器延伸出的实例分割算法YOLACT填补了实时实例分割模型的空白,具有较高的研究和应用价