论文部分内容阅读
提出多视图卷积神经网络模型MV-PearlNet,替代人工进行细粒度珍珠分类.该模型采用并行化处理方式,针对珍珠的多个视角图片提取特征,可提升珍珠图片的特征提取效果,并且采用中间层特征融合作为珍珠的特征表达.在训练集数据量有限的情况下,通过MV-PearlNet结合K-means方法,将无监督聚类算法应用到提取得到的特征中,并利用相似度计算完成自动类标学习,这些操作起到了扩充数据集的作用,有助于改善深度分类模型因为训练集不足导致的欠拟合问题,可提高模型的分类准确率.实验结果表明,相比于主流卷积神经网