High loading carbon nanotubes deposited onto porous nickel yarns by solution imbibition as flexible

来源 :能源化学 | 被引量 : 0次 | 上传用户:cnars
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The deposition of active materials directly onto metal wires is a general strategy to prepare wire-shaped electrodes for flexible and wearable energy storage devices.However,it is still a critical challenge to coat active materials onto the aimed metal wires because of their smooth surface and small specific surface area.In this work,high porous nickel yarns (PNYs) was fabricated using commercial nylon yarns as templates through step-wise electroless plating,electroplating and calcination processes,The PNYs are composed of multiplied fibers with hollow tubular structure of 5-10μm in diameter,allowing the imbibition of carbon nanotubes (CNTs) solution by a facile capillary action process.The prepared CNTs/PNY electrodes showed a typical electrochemical double layer capacitive performance and the constructed allsolid flexible wire-shaped symmetric supercapacitors provided a specific capacitance of 4.67 F/cm3 with good cycling stability at a current density of 0.6 A/cm3.
其他文献
Here we demonstrate the fabrication,electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with β-Ni(OH)2/MWCNTs as positive electrode and KOH activated honeycomb-like porous carbon (K-PC) derived from banana f
Catalytic conversion of glucose,the most abundant carbohydrate,to chemicals of petroleum origin has great desirability in terms of sustainability and industrial implementation.In this work,we attempted to exploit the vanadium-based catalysts with high ret
The large irreversible capacities of graphene oxide-based anodes hinder commercial applications of GO materials although the high specific capacity of it has been universally accepted.In this paper,GO was treated under alkaline condition and the composite
Last decade witnessed tremendous research and development in the area of photo-electrolytic hydrogen generation using chemically stable nanostructured photo-cathode/anode materials.Due to intimately coupled charge separation and photo-catalytic processes,
It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously ordered macroscopic poly(ionic liquid
Lithium-sulfur batteries are promising next-generation energy storage devices beyond conventional lithium ion batteries.However,it suffers from rapid capacity fading and poor cyclic stability.Here we report a facile in situ sulfur deposition and chemical
Polybenzimidazole containing ether bond (OPBI) was reinforced with silicon carbide whisker (mSiC) modified by 3-aminopropyltriethoxysilane (KH550),and then doped with phosphoric acid (PA) to obtain OPBI/mSiC/PA membranes.These OPBI/mSiC/PA membranes have
A series of xNiAl2O4/γ-Al2O3 composites with various Ni contents have been prepared via one-step partial hydrolysis of metal nitrate salts in the absence of surfactants and used for carbon dioxide reforming of methane.The characterization results demonstr
Developing earth-abundant-electrocatalysts for hydrogen evolution reaction is one of the promising ways to achieve efficient water-splitting for hydrogen production (a clean chemical fuel).This paper reviews the activity,stability and durability for hydro
LiMn2O4 and LiNixAlyMn2-x-yO4 (x=0.50;y=0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active chelating agent.The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis