Cryogenic minimum quantity lubrication machining:from mechanism to application

来源 :机械工程前沿 | 被引量 : 0次 | 上传用户:xuwei5858
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Cutting fluid plays a cooling-lubrication role in the cutting of metal materials.However,the substantial usage of cutting fluid in traditional flood machining seriously pollutes the environment and threatens the health of workers.Environmental machining technologies,such as dry cutting,minimum quantity lubrication (MQL),and cryogenic cooling technology,have been used as substitute for flood machining.However,the insufficient cooling capacity of MQL with normal-temperature compressed gas and the lack of lubricating performance of cryogenic cooling technology limit their industrial application.The technical bottleneck of mechanical-thermal damage of difficult-to-cut materials in aerospace and other fields can be solved by combining cryogenic medium and MQL.The latest progress of cryogenic minimum quantity lubrication(CMQL) technology is reviewed in this paper,and the key scientific issues in the research achievements of CMQL are clarified.First,the application forms and process characteristics of CMQL devices in turning,milling,and grinding are systematically summarized from traditional settings to innovative design.Second,the cooling-lubrication mechanism of CMQL and its influence mechanism on material hardness,cutting force,tool wear,and workpiece surface quality in cutting are extensively revealed.The effects of CMQL are systematically analyzed based on its mechanism and application form.Results show that the application effect of CMQL is better than that of cryogenic technology or MQL alone.Finally,the prospect,which provides basis and support for engineering application and development of CMQL technology,is introduced considering the limitations of CMQL.
其他文献
Microplastics are an emerging threat and a big challenge for the environment.The presence of microplastics (MPs) in water is life-threatening to diverse organisms of aquatic ecosystems.Hence,the scientific community is exploring deeper to find treatment a
Microplastics (MPs) are widely present in a variety of environmental media and have attracted more and more attention worldwide.However,the effect of MPs on the interaction between heavy metals and soil,especially in soil solid fraction level,is not well
随着5G时代的到来,地震过程能通过密集分布的摄像头实时记录并快速传输处理,以动态图像的形式更直观地呈现出来.如能从中快速准确的提取地震动参数等数据,将会是地震资料的宝库,弥补地震台站布置密度的不足..通过振动台模拟地震过程,结合图像识别和结构动力学分析方法,提出一种基于图像动态识别技术的地震动参数快速判别方法.通过不同摄像头高度、波形和振动频率下的计算和实测加速度曲线对比分析,多数加速度峰值误差在40%以内,证明该方法具有应用推广价值,能为将来地震动分析工作提供另一层面的解决途径.
Microplastics existing widely in different matrices have been regarded as a reservoir for emerging contaminants.Mariculture systems have been observed to host microplastics and antibiotic resistance genes (ARGs).However,more information on proliferation o
The recovery of scattered metal ions such as perrhenate (Re(Ⅶ)) from industrial effluents has enormous economic benefits and promotes resource reuse.Nanoscale-metal/biochar hybrid biosorbents are attractive for recovery but are limited by their insufficie
半球谐振子固有刚性轴方位角测量是谐振子制造及调平等工艺过程的重要基础.首先对半球谐振子固有刚性轴方位角的测定方法进行了理论分析,其次开展了基于位置激励的半球谐振子谐响应仿真研究,模拟了固有刚性轴位置的测定过程,最后通过设计试验,采用非接触式声波激励,激光多普勒测振仪采集唇缘不同位置的振动信号,完成了半球谐振子固有刚性轴方位角的测定.该方法的角度分辨率优于1 °,结果表明:其固有频率主轴方位角的辨识误差约为4.4%,具有良好的可行性,该方法装置简单、便于操作,对半球谐振子初期研制过程中固有刚性轴方位角的精确
On October 18th 2021,the inaugural ceremony for the first wastewater resource recovery factory (WRRF) in China,Yixing Concept WRRF (Fig.1),was held in the Environmental Science Park,Yixing,Jiangsu Province(Li,2021).It is a milestone for water pollution co
期刊
Formation of secondary inorganic aerosol (SIA) was investigated during a six-month long heating season in Harbin,China.Enhanced sulfate formation was observed at high relative humidity (RI),with the same threshold RH (80%) for both colder and warmer measu
In wastewater treatment plants (WWTPs),microplastics (MPs) are complex,especially with mixed domestic-industrial influents.Conventional random grab sampling can roughly depict the distribution and characterstics of MPs but can not accurately reflect their
Mercury (Hg0) is a hazardous air pollutant for its toxicity,and bioaccumulation.This study reported that membrane biofilm reactor achieved mercury removal from flue gas using nitrate as the electron acceptor.Hg0 removal efficiency was up to 88.7% in 280 d