论文部分内容阅读
支持向量机(Support Vector Machines,SVM)故障分类器,在不易取得训练样本的情况下,实现较高准确率的故障诊断,并且具有较强的通用性和实用性。提出三种支持向量多类分类器(一对一算法、一对多算法,以及改进型一对多算法),通过将其应用到实际电路进行故障诊断当中对其性能进行比较,得出串行支持向量机无论在分类速度上还是在分类精度上都好于其它两种方法,核函数的选择对故障诊断的性能也存在着一定的影响。