Multivariate Statistical Process Monitoring Using Robust Nonlinear Principal Component Analysis

来源 :Tsinghua Science and Technology | 被引量 : 0次 | 上传用户:dzsw2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The principal component analysis (PCA) algorithm is widely applied in a diverse range of fields for performance assessment, fault detection, and diagnosis. However, in the presence of noise and gross errors, the nonlinear PCA (NLPCA) using autoassociative bottle-neck neural networks is so sensitive that the obtained model differs significantly from the underlying system. In this paper, a robust version of NLPCA is introduced by replacing the generally used error criterion mean squared error with a mean log squared error. This is followed by a concise analysis of the corresponding training method. A novel multivariate statistical process monitoring (MSPM) scheme incorporating the proposed robust NLPCA technique is then investigated and its efficiency is assessed through application to an industrial fluidized catalytic cracking plant. The results demonstrate that, compared with NLPCA, the proposed approach can effectively reduce the number of false alarms and is, hence, expected to better monitor real-world processes. However, in the presence of noise and gross errors, the nonlinear PCA (NLPCA) using autoassociative bottle-neck neural networks is so sensitive that the resulting model differs significantly from the underlying system. In this paper, a robust version of NLPCA is introduced by replacing the generally used error criterion mean squared error with a mean log squared error. This is followed by a concise analysis of the corresponding training method. A novel multivariate statistical process monitoring (MSPM) scheme incorporating the proposed robust NLPCA technique is then investigated and its efficiency is consistently applied to an industrial fluidized catalytic cracking plant. The results demonstrate that, compared with NLPCA, the proposed approach can effectively reduce the number of false alarms and is, hence, expected to bette r monitor real-world processes.
其他文献
海外媒体和读者对于当代中国文学本就所知甚少,莫言获诺贝尔文学奖之后,媒体一时间无所适从。各种报道更多地集中在莫言获奖的文化意义与作为“经济巨人”的国家形象之间的关系方面,这也表明,海外对中国的认知,更多的集中在中国的经济成就方面。人们总是从自己熟悉的东西上去寻找新事物的认知参照物。至于莫言获奖与国家经济成就之间的关系性质究竟为何,解释则各有不同。一种观点认为,这是经济繁荣、大国崛起在文化方面的指标
九月下旬抵达牛津,时差还未倒好中秋节就到了。牛津街上找不到节日的影子,商店里闻不见月饼的香味,顽固的生物钟加重了思乡情结。有人说中国超市有月饼,可它不在市中心,也不知怎么走。想到国内中秋前后月饼大潮铺天盖地,光看着也觉得喜庆,不禁感到几分落寞,也有几分怀念,虽然我其实并不爱吃月饼。  牛津的中国人越来越多,当然也有中秋活动。我住处的布告栏中同时看到了几则海报,有华人教会组织的聚餐和讲座,有中国学者
“我要吃荔枝。”  “十月份,我到哪里给你去弄荔枝?”  “树上啊。”  诸如此类的对话在《小时代》里随处可见,说幽默吧,笑不出来;说个性化吧,也实在没什么思想内涵。我这人没什么特别的嗜好,平生就爱跟朋友一起说说笑话、开开玩笑,然而害怕的也是听人家讲不好笑的笑话,还自以为是,让人起鸡皮疙瘩。笑点和哭点,人人都有的两个情绪点,都无所谓高优还是低劣,但哭点只关乎心境,而笑点则涉及文化修养。平时,但凡遇
近年来,金属纳米团簇由于其特有的量子尺寸效应以及生物相容性好、灵敏度高、光稳定性强、斯托克位移大等特点引起了学者的广泛关注。本文以金、铜纳米团簇为研究对象,从寻找新的模板、优化反应条件出发,在合成制备的基础上,就金、铜纳米团簇的光学性能及其在生化分析中的应用进行研究,主要研究内容如下:1.以L-酪氨酸为模板,一步合成了具有荧光的金纳米团簇(Gold nanoclusters,AuNCs),并通过荧