论文部分内容阅读
蚁群算法是近几年优化领域中新出现的一种启发式仿生类并行智能进化算法,虽然该算法已经在众多组合优化领域中得到广泛应用,但是对其收敛性尤其是A.S.(AlmostSurely)收敛性问题的研究还存在很多空白.本文在介绍蚁群算法基本原理的基础上,以Markov链和离散鞅作为研究工具,对基本蚁群算法的A.S.收敛性问题进行了理论证明,把最优解集序列转变为下鞅序列来考察残留信息素轨迹向量的收敛性,随后提出了基本蚁群算法首达时间的定义,并对基本蚁群算法首次到达时间的期望值进行了理论分析.