论文部分内容阅读
针对现有序列聚类算法在对大规模数据进行聚类时,内存空间和计算时间开销较大的问题,提出了基于MapReduce的人工蜂群聚类算法。该算法通过引入MapReduce并行编程范式,快速计算聚类中心适应度,可实现对大规模数据的高效聚类。基于仿真数据对算法的聚类效果和聚类效率进行了验证。实验结果表明,与现有PK-Means算法和并行K-PSO算法相比,该算法具有更好的聚类效果和更高的聚类效率。