Rapid detection of pesticide residues in Chinese herbal medicines by molecularly imprinted membrane

来源 :中国化学快报(英文版) | 被引量 : 0次 | 上传用户:henbuxiaxin11
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Chinese herbal medicines (CHMs) play an increasingly important role in the field of medicine and affects public health in the world. Although more and more strict has been employed to ensure the quality and safety of CHMs, pesticide residues in CHMs remain a serious issue and are the bottleneck for the global development of CHMs. In this work, we applied molecularly imprinted membrane electrospray mass spectrometry (MIM-ESI MS) for rapid detecting 4 classes of pesticide residues in CHMs, including organophosphorus (OPP), carbamates, pyrethroids and neonicotinoids in CHMs. Compared with our previous ambient ionization method MESI, MIM-ESI is capable of achieving a~50-fold increase in the detection limit of conventional analytical methods owing to the specificity recognition and unique enrichment of MIM. The optimal experimental conditions were determined, and the method was further validated for its sensitivity and specificity. Our data showed that MIM-ESI MS is applicable for the direct quantitation of pesticide residues in CHMs. This detection technology may help to ensure the quality of CHMs in the future.
其他文献
A heterojunction of Sm-doped g-C3N4/Ti3C2 MXene (SCN/MX) was constructed via prepolymerization and solid mixture-calcination method. The modified g-C3N4 presented a hollow porous seaweed-like shape which can increase its specific area and active sites. In
Being abundant and active, Fe2O3 is suitable for selective oxidation of H2S. However, its practical application is limited due to the poor sulfur selectivity and rapid deactivation. Herein, we report a facile template-free hydrothermal method to fabricate
Chemodynamic therapy (CDT) is an emerging endogenous stimulation activated tumor treatment approach that exploiting iron-containing nanomedicine as catalyst to convert hydrogen peroxide (H2O2) into toxic hydroxyl radical (·OH) through Fenton reaction. Due
With regard to the reaction of higher alcohol synthesis (HAS), the optimizations of activity and selectivity towards C2+alcohol are restricted by the improper equilibrium in two different CO activation pathways and chain growth capacity. Herein, we find t
Water electrolysis technology holds the perfect promise of the hydrogen production, yet control of efficiency and rate of water electrolysis greatly relies on the availability of high-performance electrode materials for kinetic-sluggish oxygen evolution r
Injectable hydrogels have been considered as promising materials for bone regeneration, but their osteoinduction and mechanical performance are yet to be improved. In this study, a novel biocompatible injectable and self-healing nano hybrid hydrogel was o
Carbon nanotube film (CNTF) can be used for photocatalysis and water treatment due to its porous structure, good stability and excellent electrical properties. In this work, TiO2/amorphous carbon/carbon nanotube film (TCC) composite with uniform structure
A novel GO modified g-C3N4 nanosheets/flower-like BiOBr hybrid photocatalyst is fabricated by a facile method. The characterization results reveal that wrinkled GO is deposited between g-C3N4 nanosheets and flower-like BiOBr forming a Z-scheme heterojunct
Fe-based compounds with good environmental friendliness and high reversible capacity have attracted considerable attention as anode for lithium-ion batteries. But, similar to other transition metal oxides (TMOs), it is also affected by large volume change
Aqueous supercapacitors (SCs) have attracted more and more attention for their safety, fast charge/discharge capability and ultra-long life. However, the application of aqueous SCs is limited by the low working voltage due to the narrow electrochemical st