论文部分内容阅读
近红外(near—infrared,NIR)校正模型建立时传统的训练样本选择方法只考虑光谱欧氏距离的同类就近选取,不考虑光谱特征异常的训练样本的影响。基于主元分析(principal component analysis,PCA)残差,在同类就近取样的基础上引入异常光谱剔除技术进行训练样本的二次提取,用于建立偏最小二乘(partial least squares,PLS)回归模型。实验结果表明,该方法比传统方法的预测精度有较明显的提高。