,Recent advances in efficient computation of deep convolutional neural networks

来源 :信息与电子工程前沿(英文版) | 被引量 : 0次 | 上传用户:lihai3120
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Deep neural networks have evolved remarkably over the past few years and they are currently the fundamental tools of many intelligent systems. At the same time, the computational complexity and resource consumption of these networks continue to increase. This poses a significant challenge to the deployment of such networks, especially in real-time applications or on resource-limited devices. Thus, network acceleration has become a hot topic within the deep leaing community. As for hardware implementation of deep neural networks, a batch of accelerators based on a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC) have been proposed in recent years. In this paper, we provide a comprehensive survey of recent advances in network acceleration, compression, and accelerator design from both algorithm and hardware points of view. Specifically, we provide a thorough analysis of each of the following topics: network pruning, low-rank approximation, network quantization, teacher–student networks, compact network design, and hardware accelerators. Finally, we introduce and discuss a few possible future directions.
其他文献
棉花是重要的经济作物,是纺织工业的重要原料。近年来,遗传基础狭窄已经成为限制栽培种陆地棉育种取得突破性进展的主要因素。为了探究拓宽棉花遗传基础,提高棉花的遗传多样性以提高棉花品种的产量、品质、抗逆性等,广泛利用棉属野生种,开展远缘杂交研究显得尤为重要。澳洲棉、比克氏棉和雷蒙德氏棉都是二倍体野生种,具有多种在棉花育种中可利用的优良特性。为了有效发掘和利用澳洲棉、比克氏棉和雷蒙德氏棉的优异基因资源,将
小麦(Triticum aestivumL.)是世界上最重要的粮食作物之一,为提高小麦产量,化肥施用量逐年递增,导致环境污染、土壤性质改变。因此如何提高肥料利用率,减少养分损失、降低污染,越来越受到人们的关注。缓控释肥作为一种新型肥料,其肥料在土壤中释放速率与作物养分吸收一致,对小麦产量和肥料利用率有重要影响。本研究以扬麦13为材料,在大田条件下,研究了缓控释肥对小麦生长、产量、品质及肥料利用效率
油菜是我国一种主要的油料作物,其种植面积达6.0×10~6hm~2,每年生产菜油300~350万吨,产量及播种面积均位居世界第一位。预计在近几年内其种植面积可能达到7.0×10~6 hm~2。目前,开展优质杂交种的选育已经成为油菜育种的主攻方向。育种材料的遗传多样性对于能否选育出符合育种目标的优质杂交种起着重要的作用。分子标记在育种上的广泛应用为广大育种工作者了解育种材料的遗传背景、选择最佳亲本配
As Moore’s law based device scaling and accompanying performance scaling trends are slowing down,there is increasing interest in new technologies and computati
In this study, hybrid computational frameworks are developed for active noise control (ANC) systems using an evolu-tionary computing technique based on genetic