论文部分内容阅读
针对传统机器学习方法需要大量专家知识和高昂经济成本,研究了一种基于注意力机制和Inception网络结构的卷积神经网络。其注意力机制是对数据的不同特征维度赋予不同的权重,抽取出更加关键和重要的信息,使模型做出更加准确的判断。其Inception网络结构则是拓宽网络的宽度并增加网络对卷积核尺度的适应性,以提取到更加丰富的特征。为了提高模型的泛化能力,在每个卷积层和全连接层后又添加了一个DropBlock层。最后结果显示该模型不仅在同负载的情况下获得很高的滚动轴承故障分类准确率和稳定性,并且在不同负载情