RNA interference and its current application in mammals

来源 :中华医学杂志(英文版) | 被引量 : 0次 | 上传用户:sxsj002
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Objective The aim of this review was to assess RNA interference (RNAi) and its possibility as a potential and powerful tool to develop highly specific double-stranded RNA( dsRNA) or small interfering RNA (siRNA) based gene-silencing therapeutics.Data sources The data used in this review were obtained from the current RNAi-related research reports.Study selection dsRNA-mediated RNAi has recently emerged as a powerful reverse genetic tool to silence gene expression in multiple organisms. The discovery that synthetic duplexes of 21 nucleotides siRNAs trigger gene-specific silencing in mammalian cells has further expanded the utility of RNAi in to the mammalian system.Data extraction The currently published papers reporting the discovery and mechanism of RNAi phenomena and application of RNAi on gene function in mammalian cells were included.Data synthesis Since the recent development of RNAi technology in the mammalian system, investigators have used RNAi to elucidate gene function, and to develop gene-based therapeutics by delivery exogenous siRNA or siRNA expressing vector. The general and sequence-specific inhibitory effects of RNAi that will be selective, long-term, and systemic to modulate gene targets mentioned in similar reports have caused much conc about its effectiveness in mammals and its eventual use as a therapeutic mordality. Conclusions It is certain that the ability of RNAi in mammals to silence specific genes, either when transfected directly as siRNAs or when generated from DNA vectors, will undoubtedly accelerate the study of gene function and might also be used as a potentially useful method to develop highly gene-specific therapeutic methods. It is also expected that RNAi might one day be used to treat human diseases.
其他文献
为了提高1 550 nm近红外波段光斑位置的检测精度,提出了一种改进的积分无穷解算模型。以高斯光斑为入射光模型,深入分析了In Ga As四象限探测器(Quadrant Detector,QD)输出信
期刊
期刊
搭建了涡旋光在多层介质膜中的传输模型,分析了涡旋光垂直入射下膜系内的温升分布。结果表明,膜系内的温升分布与涡旋光入射面密切相关。当涡旋光在初始面入射时,膜系的温升
Background Skin lesions are common manifestations in systemic lupus erythematosus (SLE). It is still unknown what the definite pathogenesis of skin involvement
设计了一种基于MEMS技术的可调谐光学滤波器,它通过光栅将输入的宽带光信号色散展开,以一个MEMS扭镜选择将对应滤波器通带的光信号反射至输出端,从而实现光学滤波和波长调谐