论文部分内容阅读
针对模式分类中特征选择问题,为去除冗余特征,提高分类准确率,提出一种基于ReliefF算法、Fisher比率算法和马氏距离算法的多准则排序融合的特征选择方法。动态结合上述3种单准则特征选择法的优点,实现对多个评价准则的综合利用。以Ionosphere标准数据集和高速列车转向架故障数据集为研究对象进行实验仿真,仿真结果表明,相比于单准则特征选择法,该方法能更有效地降低特征维数,具有更高的分类性能。