论文部分内容阅读
为了很好地识别旋转机械的转静件碰摩故障,提出了基于小波包和支持向量机(SVM,support vector machine)的碰摩故障识别方法。采用小波包对信号进行特征向量的提取,利用基于“一对多”和“一对一”的改进算法构建多类故障分类器,对多种碰摩故障进行识别。同时,以双盘悬臂转子-轴承系统的碰摩故障为例,应用该方法进行故障识别,试验结果表明,RBF核SVM故障平均识别率达到97.25%。可见,基于小波包与支持向量机分类器诊断方法的识别率明显优于传统的BP神经网络和RBF神经网络分类器,且鲁棒性好,并具