论文部分内容阅读
行人检测在智能汽车、监控系统和高级机器人等领域有广泛的应用。针对低分辨率和需要实时处理的行人检测应用场景,提出了采用一致化LBP直方图特征结合Ad—aBoost分类器的高效行人检测方法。在AdaBoost的训练过程中,采用了CART(Classification And Regression Tree)作为弱分类器,并结合基于Gini不纯度的剪枝方法,有效地提高了训练速度和分类器的性能。针对Cahech行人检测数据集的实验结果表明,基于LBP特征和CART弱分类器的AdaBoost分类行人检测方法具有较好