论文部分内容阅读
介绍了基于Web内容和结构挖掘的专题化智能Web爬行Crawler系统,并重点介绍其中CA(C&S)算法,该算法充分利用神经网络可以方便地模拟网络的拓扑结构和并行计算的特点,采用加强学习判断网页与主题的相关度,在进行相关度计算时,不考虑网页的全部内容,而通过提取网页的HTML描述中的重要标记,对Web网页进行内容和结构分析,从而判断爬行到的网页与主题的相关性,以提高信息搜集的效率和精确性。