We report on the modeling, simulation, and experimental demonstration of complete mode crossings of Fano resonances within chip-integrated microresonators. The continuous reshaping of resonant line shapes is achieved via nonlinear thermo-optical tuning wh
We report on the modeling, simulation, and experimental demonstration of complete mode crossings of Fano resonances within chip-integrated microresonators. The continuous reshaping of resonant line shapes is achieved via nonlinear thermo-optical tuning when the cavity-coupled optical pump is partially absorbed by the material. The locally generated heat then produces a thermal field, which influences the spatially overlapping optical modes, allowing us to alter the relative spectral separation of resonances. Furthermore, we exploit such tunability to continuously probe the coupling between different families of quasi-degenerate modes that exhibit asymmetric Fano interactions. As a particular case, we demonstrate a complete disappearance of one of the modal features in the transmission spectrum as predicted by Fano [Phys. Rev.124, 1866 (1961)PHRVAO0031-899X10.1103/PhysRev.124.1866]. The phenomenon is modeled as a third-order nonlinearity with a spatial distribution that depends on the stored optical field and thermal diffusion within the resonator. The performed nonlinear numerical simulations are in excellent agreement with the experimental results, which confirm the validity of the developed theory.
A second generation solar adaptive optics (AO) system is built and installed at the 1-m New Vacuum Solar Telescope (NVST) of the Fuxian Solar Observatory (FSO) in 2015. The AO high-order correction system consists of a 151-element deformable mirror (DM),
We design custom-shaped modes for a sixfold symmetric photonic quasi-crystal fiber (PQF), an optical fiber with a sixfold symmetric quasi-periodic array of air holes in the cladding region. The supermodes of the PQF are calculated by the finite element me
Development of novel vaccine deliveries and vaccine adjuvants is of great importance to address the dilemma that the vaccine field faces: to improve vaccine efficacy without compromising safety. Harnessing the specific effects of laser on biological syste
We design and analyze a novel multiband left-handed metamaterial based on a fishnet-like structure at terahertz (THz) frequencies. The metamaterial exhibits simultaneous negative refractions around the frequencies of 0.48, 1.05, and 1.19 THz for the elect