论文部分内容阅读
本文是在深度特征与相关滤波相结合的高效卷积运算符(ECO)目标跟踪算法基础上进行的改进。首先,为了提高跟踪速度,提出"浅层特征不插值,深层特征插值"的卷积神经网络(CNN)分层插值处理方法,对具有较高分辨率的浅层特征不插值,对分辨率低的深层特征进行插值计算来提高分辨率;其次,改进了样本空间分类策略,给CNN特征层分配不同的权重,突出不同特征层对样本间距离的影响,并且将所有样本信息都保留在训练样本集中;最后,应用判别尺度空间跟踪(DSST)算法提出的对目标尺度估计的方法,增加了目标尺度的候选数量,使尺