论文部分内容阅读
利用超声图像获取胎儿的各项生物指标,对诊断胎儿发育过程中的异常有重要作用.当前主要依靠医生对超声图像的手动测量来确定这些指标.然而,医师手动测量不仅具有主观性,而且在重复作业下效率低下.针对以上问题,提出一种基于DenseASPP模型的超声图像分割改进算法,以辅助医生完成对胎儿各项生物指标的测量.在DenseASPP模型中,首先利用普通卷积预先提取原始图像的特征得到预特征图,再以扩张卷积及金字塔池化结构为基础将前层所有扩张卷积的输出特征图与预特征图拼接在一起传输到下一层扩张卷积以获得更大感受野的多尺