论文部分内容阅读
同时定位与地图构建(SLAM)在智能驾驶和机器人技术中发挥着重要的作用.针对传统随机抽样一致(RANSAC)算法对噪声敏感的问题,提出了一种改进的RANSAC算法,命名为LORANSAC,简称LO*.该算法包含内点筛选和非线性优化两部分.首先,在传统RANSAC算法估计出较好的模型后,保存在这个模型下得到的内点,在这些内点中随机选出一个子集,以进一步缩小内点的选择范围,迭代地进行模型估计.然后,对估计的模型进行捆集调整,通过最小化误差优化模型.实验使用公开的TUM RGBD数据集和KITTI数据集中