一类极小线性码及其应用

来源 :南京信息工程大学学报(自然科学版) | 被引量 : 0次 | 上传用户:yanweiwch
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要 利用由定义集设计线性码的方法,通过选取新的定义集,构造了一类新的且具有2个非零重量的线性码,并以指数和为工具,确定了其重量分布.进一步,判定了所构造这类线性码是极小线性码,并研究了该类线性码在秘密共享方案中的应用.
  关键词
  线性码;重量分布;秘密共享方案
  中图分类号  O157
  文献标志码  A
   0 引言
  在编码领域中,具有较少非零重量的线性码可被应用于秘密共享方案[1] 、强正则图[2] 、结合方案[3] 等领域,因此,构造具有较少非零重量的线性码是一个十分有意义的研究课题.线性码的重量分布是反映其性能的一个重要参数,但是,计算线性码的重量分布并不容易.只有当线性码具有较少个数的重量时,才有可能确定其重量分布.计算线性码的重量分布常常可转化为确定某些指数和的取值分布问题.近年来,已有大量关于线性码的构造及其重量分布的研究成果[4-5] .
  4 结束语
  与文献[11]定理5中定义的线性码C D相比,本文的不同之处在于通过选取不同的定义集D c={(x,y)∈  F  2 q: tr  m(x 2+y 2)=c},其中c為  F  * p 中一给定元素,从而构造出了一类线性码C D c .首先,本文确定了线性码C D c 的重量分布.同时,发现这类线性码的重量分布与非零c的选取无关.然后,证明了这类线性码是一类极小线性码,且证明了其对偶码C ⊥ D c  的极小距离d ⊥为2.最后,本文还给出了此类极小线性码在秘密共享方案中的简单应用.此外,用文献[15]中构造的定义集可将此线性码推广为更宽泛的形式.
   参考文献
  References
  [ 1 ] Yuan  J,Ding C S.Secret sharing schemes from three classes of linear codes[J].IEEE Trans Inf Theory,2006,52(1):206-212
  [ 2 ] Ding C S,Wang X S.A coding theory construction of new systematic authentication codes[J].Theoretical Computer Science,2005,330(1):81-99
  [ 3 ] Calderbank A R,Goethals J M.Three-weight codes and association schemes[J].Philips Journal of Research,1984,39(4):143-152
  [ 4 ] Li S,Feng T,Ge G.On the weight distribution of cyclic codes with Niho exponents[J].IEEE Trans Inf Theory,2014,60(7):3903-3912
  [ 5 ] Ding C S,Li C,Li N,et al.Three-weight cyclic codes and their weight distributions[J].Discrete Mathematics,2016,339(2):415-427
  [ 6 ] Li F,Wang Q Y,Lin D D.Complete weight enumerators of a class of three-weight linear codes[J].Journal of Applied Mathematics & Computing,2017,55(1/2):733-747
  [ 7 ] Liu H B,Liao Q Y.Several classes of linear codes with a few weights from defining sets over    F  p+u  F  p [J].Designs,Codes and Cryptography,2018,DOI:10.1007/s10623-018-0478-1
  [ 8 ] Li  C J,Yue Q,Fu F W.A construction of several classes of two-weight and three-weight linear codes[J].Applicable Algebra in Engineering,Communication & Computing,2017,28(1):11-30
  [ 9 ] Lidl  R,Niederreiter H.Finite fields[M].Cambridge,1993
  [10] Li  F,Wang Q Y,Lin D D.A class of three-weight and five-weight linear codes[J].Mathematics,2015,241(31):25-38
  [11] Song  Y,Li Z H,Li Y M.Secret sharing schemes in minimal linear code[J].Acta Electronica Sinica,2013,41(2):220-226
  [12] Ding C S,Yuan J.Covering and secret sharing with linear codes[J].Discrete Mathematics,2003,2731:11-25   [13] Li Z H,Xue T,Lai H.Secret sharing schemes from binary linear codes[J].Information Sciences,2011,180(22):4412-4419
  [14] Massey J L.Minimal codewords and secret sharing[C]∥The 6th  Joint Swedish-Russian Workshop on Information theory.Netherlands:Veldhoven,1993:276-279
  [15] Du X N,Wan Y Q.Linear codes from quadratic forms[J].Applicable Algebra in Engineering,Communication and Computing,2017,28(6):535-547
  A class of minimum linear codes and their applications
  DENG Lan 1
  1 College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074
  Abstract  Based a generic method,a class of linear codes with two nonzero weights wasconstructed by choosing a new definition set.Utilizing the exponential sums,the weight distribution of the proposed linear code was derived.Furthermore,it was shown that the constructed linear codes were minimum linear codes,and their application in secret sharing schemes was demonstrated.
  Key words  linear code;weight distribution;secret sharing scheme
其他文献
本文简要讨论Gronwall不等式的研究进展,并给出关于如下的一类非线性Volterra积分不等式的一个结果:w(u(t))≤g(t)+∑i=1^n∫αi(t0)^αi(t)fi(t,s)∏j=1^mHij(u(s))Gij(max s-h≤ξ≤s u(ξ))ds.
采用有限电导率下的时域有限差分(FDTD)方法,分析了建筑物对地闪回击电磁环境的影响.结果发现建筑物对回击电场的影响较为明显,对磁场影响较小,建筑物高度hb=50 m时对磁场的影