论文部分内容阅读
设X的分布密度是f(x,θ)=exp{θx-ψ(θ)}(关于某测度v),这里θ是未知参数,θ∈(,),-∞≤ < ≤∞,给定θ0,θ1(<θ0<θ1<),对于检验问题“零假设是θ≤θ0,对立假设是θ≥θ1”,找出了一类截尾的序贯检验法,其第一类错误的概率不超过α,第二类错误的概率不超过β,而且α+β→0时平均样本量对一切θ均渐近地最小。