论文部分内容阅读
针对传统的BP神经网络算法在对高层建筑进行结构设计时还存在精度不高、误差较大等问题,本文提出了一种基于自适应和误差修正BP神经网络算法的高层建筑结构设计模型,该模型在BP神经网络算法的基础上,首先采用自适应调整策略对其网络模型进行优化,然后采用增加动量项、误差累积处理和陡度因子优化等误差修正策略提高原算法的训练精度.仿真试验结果表明,本文提出的基于自适应和误差修正BP神经网络算法的高层建筑结构设计模型相比较传统的BP神经网络算法精度要高,具有较好的鲁棒性.