Stress accumulation in Ni-rich layered oxide cathodes:Origin,impact,and resolution

来源 :能源化学 | 被引量 : 0次 | 上传用户:michelle77
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
LiNixCoyMnzO2 (NCM,x + y + z =1) is one of the most promising cathode candidates for high energy den-sity lithium-ion batteries (LIBs).Due to the potential in enhancing energy density and cyclic life of LIBs,Ni-rich layered NCM (NCM,x ≥ 0.6) have garnered significant research attention,However,improved specific capacity lead to severer expansion and shrinkage of layered lattice,accelerating the stress gen-eration and accumulation even microcracks formation in NCM materials.The microcracks can promote the electrolyte permeation and decomposition,which can consequently reduce cyclic stabilities.Therefore,it is significant to provide an in-depth insight into the origin and impacts of stress accumula-tion,and the available modification strategies for the future development of NCM materials.In this review,we will first summarize the origin of stress accumulation in NCM materials.Next,we discuss the impact of stress accumulation.The electrolyte permeation along microcracks can enhance the extent of side reaction at the interface,trigger phase transformation and consequential capacity fading.To cush-ion the impact of stress accumulation,we will review five main strategies.Finally,concise perspectives to reduce stress accumulation and enhance particle strength in further works will be presented.
其他文献
Featured with high power density,improved safety and low-cost,rechargeable aqueous zinc-ion batter-ies (ZIBs) have been revived as possible candidates for sustainable energy storage systems in recent years.However,the challenges inherent in zinc (Zn) anod
Lithium-sulfur (Li-S) batteries are deemed as one of the most promising energy storage systems due to their ultrahigh theoreti-cal energy density of 2600 Wh kg-1 far beyond the current lithium-ion battery technique [1].Generally,the sulfur redox reac-tion
期刊
At present,the stability of the new generation of solar cells based on hybrid perovskites is the bottleneck for their practical applications.Photochemical effects,high temperature,ultraviolet light,humidity and other known or still unknown factors might c
In advantages of their high capacity and high operating voltage,the nickel (Ni)-rich layered transition metal oxide cathode materials (LiNixCoyMnzO2 (NCMxyz,x + y + z =1,x ≥ 0.5) and LiNi0.8Co0.15Al0.05O2(NCA)) have been arousing great interests to improv
Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge
Aqueous zinc-ion batteries (ZIBs) have attracted great attention as the candidates for large-scale energy storage system,recently,because of their low cost,environment-friendly,high safety,and high theoret-ical energy densities.Among the numerous cathode
Hole-transporting material (HTM) plays a paramount role in enhancing the photovltaic performance of perovskite solar cells (PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic me
Sustainable transformation and efficient utilization of biomasses and their derived materials are environ-mentally as well as economically compliant strategies.Biomass seaweed-derived nitrogen self-doped porous carbon with tailored surface area and pore s
Electrocatalytic carbon dioxide reduction (CO2R) presents a promising route to establish zero-emission carbon cycle and store intermittent renewable energy into chemical fuels for steady energy supply.Methanol is an ideal energy carrier as alternative fue
The ever-increasing need for sustainable development requires advanced battery techniques beyond the current generation of lithium ion batteries.Among all candidates being explored,lithium-sulfur batteries are a very promising system to be commercialized