论文部分内容阅读
<正>题目已知椭圆(x2)/(a2)+(y2)/(b2)=1(a>b>0)的离心率为(21/2)/2,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(21/2+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1和PF2的斜率分别为k1、k2.证明:k1k2=1;