论文部分内容阅读
本文针对传统的视网膜图像处理过程繁琐、鲁棒性差的缺点,提出设计了一种基于深度卷积神经网络(Convolutional Neural Network,CNN)的视网膜图像自动识别系统。首先,对图像预处理包括去除噪声、数值归一化、数据量扩增;然后,设计提出了一种新的神经网络模型——XNet,XNet中和了LeNet和Inception网络的深度,网络参数根据训练样本进行适应性调整;最后,针对不同的网络结构进行了准确率和迭代次数的比较。实验结果表明,XNet网络的结构要优于LeNet和Inception,