C5/DCPD/C9共聚石油树脂热聚合成反应研究

来源 :石化技术 | 被引量 : 0次 | 上传用户:song132
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文以C5馏分、双环戊二烯(DCPD)和C9馏分为原料,采用两段热聚合成法进行共聚反应制备C5/DCPD/C9共聚石油树脂。首先以C5馏分为原料,在温度240℃、压力5.5MPa的条件下,热聚合反应6h,得到C5低聚物,然后再将C5低聚物、DCPD、C9馏分三者的混合物,在压力0.40MPa~0.55MPa、温度为250℃的条件下,反应3~8h,得到色号为3.0~4.0的浅色石油树脂。
其他文献
随着现代科技的蓬勃发展,在某些特定应用领域对能在高温环境工作的压电材料需求日益紧迫,因此亟需匹配以高温压电材料为核心的新型压电元件。高温压电陶瓷Bi Sc O3-Pb Ti O3(BS-PT)拥有高的居里温度和优异的压电性能,已成为高温工作环境下的优选材料之一。本论文针对目前BS-PT陶瓷制备工艺窗口窄、温度稳定性差、高压电和高居里温度兼具困难等不足展开研究。基于Pb O能够稳定陶瓷相结构,本研究
学位
现代工业的快速发展,导致能源危机、环境污染问题越来越严重。太阳能因其取之不尽,用之不竭,绿色无污染等特点,成为当前最热门的研究内容之一。近年来,科学家们致力于光催化技术研究,将太阳能转化为氢能,同时将光催化技术应用于降解有机物等领域,设计合成一种性能优异的分解水制氢以及催化降解有机污染物的催化剂是关键所在。共价有机聚合物(COP)具有优良的可见光吸收性以及结构可设计性在光催化领域有很大的应用前景,
学位
随着社会经济的高速发展,对于钢铁等金属材料的机械性能要求也愈来愈高,对于大尺寸的实体件来说,如何保证材料组织的均匀性以及性能的稳定性就显得尤其重要。因此,以实体件进行热处理并取样,研究尺寸因素对实体件性能的影响规律,对大尺寸实际钢件的应用具有重要的意义。同时,钢铁工业中的热处理工艺被认为是改变机械和显微组织性能的重要工艺之一,故本文以高强度贝氏体钢20Cr Si Mn2Mo V为研究对象,利用硬度
学位
学位
聚合物基电致变色器件(ECDs)中的活性层由导电聚合物薄膜构成,导电聚合物薄膜可通过滴涂、旋涂、化学氧化聚合(COP)、氧化化学气相沉积(oCVD)、气相聚合(VPP)和电沉积制备。但物理涂覆、COP、oCVD和VPP等方法要么需要对导电聚合物进行分子结构设计,要么需要特殊的仪器和技术以及复杂的工艺,否则获得的电致变色薄膜均匀性较差。这就大大限制了这些薄膜制备方法的应用。电沉积是一种简单、有效、低
学位
环境污染和能源困境促使开发绿色高效能源转换系统的需求迅速增加,例如锌空气电池、燃料电池和电解水装置等。这些系统的运行都是基于氧还原反应(ORR)、析氧反应(OER)和析氢反应(HER)等电化学反应,但其缓慢的反应动力学和较高的过电位严重地阻碍了这些能量转换系统的广泛应用。虽然贵金属基材料(Pt、Ru、Ir及其氧化物等)当下是这类反应最理想的催化剂,但储量不足、耐久性欠佳使它们难以大规模应用。因此,
学位
为了降低热聚石油树脂的色号及提高生产效率,本文以C5馏分、双环戊二烯(DCPD)和C9馏分为原料,采用两段热聚合成法进行共聚反应制备C5/DCPD/C9共聚石油树脂。首先以C5馏分为原料,在温度240℃、压力5.5MPa的条件下,热聚合反应6h,得到碳五低聚物,然后再将碳五低聚物、双环戊二烯(DCPD)、C9馏分三者的混合物,在压力0.55-0.70MPa、温度为260℃的条件下,反应3-7小时,
期刊
仿生设计是一种全新的设计思路与方法。运用理论与案例相结合的方法,从仿生设计的角度探讨陶瓷产品的设计与开发,通过肌理仿生、形态仿生、结构仿生、功能性仿生等几个方面探讨仿生设计在陶瓷产品设计中的应用价值。研究发现,仿生设计介入到陶瓷产品设计中,能启发设计师的思考,更好地体现陶瓷产品的个性与趣味。
期刊
在钙钛矿固溶体中,随着成分改变,经常会引起对称性的改变,两种不同对称性的边界可称之为准同型相界(MPB)。准同型相界附近,可能存在不同对称性结构的共存,电学性能可发生剧烈变化。最近,双晶位无序铁电弛豫体系(Bi,Pb)(Ti,B)O3(B=Mg2+,Ni2+,Zn2+,Zr4+,Hf4+,Nb4+…)作为低铅压电材料引起人们广泛关注。其中BZN–PT,BNH–PT和BF–45PT:La三种体系,表
学位
新时期军事战争模式对陆军装甲车辆的机动性要求越来越高,而气缸盖作为影响装甲柴油发动机性能的关键零部件之一,其重量和性能是制约发动机性能的关键因素。目前,装甲车辆的气缸盖以铝合金和铸铁材料为主。其中,铝合金的承载能力相对较弱且服役温度不高,主要适合低功率密度的柴油发动机;铸铁承载能力强,但其密度较高,难以减重,无法满足新时期装甲车辆的性能要求。因此,开展低密度、高性能的新型铁基合金的研究具有重要意义
学位