论文部分内容阅读
为解决具有多元不同类型输出的仿真模型校准问题,提出一种基于优化和元模型的仿真模型校准方法.首先提出一种基于双层嵌套拉丁超立方抽样(LHS)的不确定性参数传播方法,获得系统同时含有认知和固有不确定性时的输出;其次,给出一种基于数据特征的仿真输出一致性度量方法,实现仿真多元异类输出的一致性度量;进而,利用随机Kriging模型拟合认知不确定性抽样样本与仿真输出一致性度量结果的元模型,并在该元模型上通过遗传算法实现校准过程.最后,通过实例验证了本文所提方法的有效性.