论文部分内容阅读
以太行山区为研究对象,基于Sentinel-2A遥感影像数据,采用基于像元和面向对象分类两种策略,定量分析不同特征组合模式下,最大似然法(ML)、贝叶斯(Bayes)、支持向量机(SVM)、决策树(Decision Tree)以及随机森林(RF) 5种分类方法在该区域地表土地覆被信息分类中的表现差异。结果表明:(1)基于像元的RF分类器取得了最高精度,仅使用光谱特征参与分类和使用光谱、红边、指数特征参与分类的总体精度分别为96. 85%和96. 64%。(2)红边和指数特征的加入能够对各分类器分类精