论文部分内容阅读
带子群的自组织蠕虫算法(Subgroup-Self-Organizing Worm Algorithm,SSOMA)是一种全新的基于涌现方法的多模态优化算法。与传统的多模态算法相比,该算法具有计算简单、收敛性好、精度高且不需要任何先验知识等优点。对该算法在高维多模态问题优化方面的应用进行了一定的探索,提出了适用于高维函数的算法,用经典测试函数对该算法进行了仿真实验,并进行了计算复杂度分析,结果表明该算法在高维多模态函数优化方面具有较为理想的应用前景。