论文部分内容阅读
提出一种新的基于Contourlet变换和脉冲耦合神经网络(PCNN)的医学图像解剖轮廓特征提取算法。首先对原始椎体CT图像进行Contourlet变换,得到能稀疏表示图像边缘以及方向信息的子带和低频子带;然后结合PCNN对低频子带进行边缘轮廓细节提取,最后利用处理后的所有子带系数,通过Contourlet逆变换,提取出图像的边缘轮廓。实验将本算法提取的结果与Canny算子、区域生长法以及结合小波变换和PCNN的算法提取的图像边缘轮廓进行比较,结果表明新算法能够有效的实现医学图像解剖结构轮廓特征的提取。