论文部分内容阅读
神经纤维跟踪通过整合纤维局部结构方向信息,可以描绘出具有解剖学意义的空间纤维结构,是扩散磁共振成像的关键步骤,对临床医学与神经科学等有着重大意义。然而,大量的研究和临床应用表明,目前的神经纤维跟踪算法重构出了大量虚假纤维而备受质疑。为了给研究者和临床医生选择神经纤维跟踪算法提供依据,本文深入分析了当前的主要跟踪算法并进行定量评估与定性比较。从确定型、概率型和全局优化等方法详细介绍各典型跟踪算法;利用Fibercup和国际医学磁共振学会(International Society for Magnet