Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities

来源 :PhotonicsResearch | 被引量 : 0次 | 上传用户:liu_da_shi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Optical trapping techniques are of great interest since they have the advantage of enabling the direct handling of nanoparticles. Among various optical trapping systems, photonic crystal nanobeam cavities have attracted great attention for integrated on-chip trapping and manipulation. However, optical trapping with high efficiency and low input power is still a big challenge in nanobeam cavities because most of the light energy is confined within the solid dielectric region. To this end, by incorporating a nanoslotted structure into an ultracompact one-dimensional photonic crystal nanobeam cavity structure, we design a promising on-chip device with ultralarge trapping potential depth to enhance the optical trapping characteristic of the cavity. In this work, we first provide a systematic analysis of the optical trapping force for an airborne polystyrene (PS) nanoparticle trapped in a cavity model. Then, to validate the theoretical analysis, the numerical simulation proof is demonstrated in detail by using the three-dimensional finite element method. For trapping a PS nanoparticle of 10 nm radius within the air-slot, a maximum trapping force as high as 8.28 nN/mW and a depth of trapping potential as large as 1.15×105 kBT mW 1 are obtained, where kB is the Boltzmann constant and T is the system temperature. We estimate a lateral trapping stiffness of 167.17 pN·nm 1· mW 1 for a 10 nm radius PS nanoparticle along the cavity x-axis, more than two orders of magnitude higher than previously demonstrated on-chip, near field traps. Moreover, the threshold power for stable trapping as low as 0.087 μW is achieved. In addition, trapping of a single 25 nm radius PS nanoparticle causes a 0.6 nm redshift in peak wavelength. Thus, the proposed cavity device can be used to detect single nanoparticle trapping by monitoring the resonant peak wavelength shift. We believe that the architecture with features of an ultracompact footprint, high integrability with optical waveguides/circuits, and efficient trapping demonstrated here will provide a promising candidate for developing a lab-on-a-chip device with versatile functionalities.
其他文献
采用热蒸发的方法在硅片衬底上自组装生长的Pentacene薄膜, 薄膜在80 ℃温度下经2 h恒温真空热处理, 通过原子力显微镜(AFM)对Pentacene薄膜表面形貌及其生长机制进行研究。 结果得到, 在硅片上生长的Pentacene薄膜是以台阶岛状结构生长, 其岛状直径约为100 nm。 且Pentacene分子以垂直于衬底的方向生长, 台阶岛状结构中每个台阶的平均高度约为1.54 nm·s-1, 与Pentacene分子的沿长轴方向的长度相近。 从Pentacene薄膜的XRD图谱中可以看出, 薄
以Cr:YAG兼作可饱和吸收体和耦合输出镜,实现了激光二极管(LD)端面抽运Nd:LuVO4晶体的微片式被动调Q激光。当抽运功率为13.86 W时,最大平均输出功率为0.508 W,相应的光光转换效率为3.6%,斜率效率为8.3%,最高重复频率、最大单脉冲能量和最短脉冲宽度分别为23.95 kHz,21.21 μJ,4.5 ns,对应的峰值功率为4.71 kW。
观察到ArF分子1933埃的强激光振荡。混合比为NF3:Ar:Ηe=1:55:630、总气压超过2.1大气压的混合气体由横放电激励。细调范围从1927埃至1936埃。脉宽15亳微秒的激光脉冲测得的输出能量为0.8亳焦耳。
期刊
设计了一种结构紧凑、宽温度范围可靠工作的半导体激光侧面泵浦电光调Q激光器, 并对其进行了实验研究。实验结果表明, 该激光器能在-40~65 ℃环境温度下, 在25 Hz工作频率时输出激光能量108~120 mJ, 激光脉宽9~10 ns, 激光发散角约2.2 mrad, 配备不同倍率的扩束望远镜获得较小的发散角, 可满足多种平台激光照射器、激光测距仪等激光传感器的需要。
利用β射线法气溶胶质量浓度自动观测仪器和膜采样设备,于2013年9月至10月在北京上甸子大气本底站进 行了气溶胶PM2.5 质量浓度的自动观测和人工采样方法的对比试验。结果表明,两种方法的观测结果间具有较 好的一致性,呈显著的线性相关关系;在PM2.5 质量浓度较低(
A flexible polarization demultiplexing method based on an adaptive Kalman filter (AKF) is proposed in which the process noise covariance has been estimated adaptively. The proposed method may significantly improve the adaptive capability of an extended Ka
英国迪萨(Disa)公司的振动仪提供了一种非接触测量的方法,它具有线性转换作用,响应时间极短。从振动仪上射出的激光束在欲测的表面上聚焦成一个点,通过后向散射光的多普勒频移,光束记下焦点处表面向着振动仪或离开振动仪的任何移动。而多普勒频移与所讨论点处表面向振动仪移动的即时速度矢量成正比。因而得到任何振动的速度轮廓。
期刊
采用外场试验进行机载光电搜救设备的训练和系统联调需要消耗大量的人力物力,针对这一问题,基于Vega Prime开发了一款机载光电搜救模拟仿真系统。该系统能够模拟光电搜救设备的所有功能,接收并响应操控手柄命令,输出PAL格式视频信号。仿真结果表明,该系统对光电搜救设备的研制具有指导意义,可以提高研发质量、缩短研制周期,降低成本。
全光采样实验中选用飞秒光纤激光器作为采样脉冲源, 用性能稳定的976 nm激光器作为抽运光源,利用非线性偏振旋转效应等效可饱和吸收体作为锁模器件,通过调节全光纤在线偏振控制器实现了自由运转被动锁模的掺铒环形腔飞秒光纤激光器,在抽运功率为176 mW时,激光器输出脉冲的重复频率为29.69 MHz,光谱谱宽16.8 nm,输出脉冲的平均功率可达8.1 mW。该激光器简单稳定, 其全光纤环形腔结构更有利于小型化,方便使用。
The hydrogen molecule is made from the first and lightest element in the periodic table. When hydrogen gas is either compressed or cooled, it forms the simplest molecular solid. This solid exhibits many interesting and fundamental physical phenomena. It i
期刊