论文部分内容阅读
为对比分析软件定义网络(SDN)环境下不同机器学习算法的网络流量分类效果,对Moore数据集进行了平衡处理,在机器学习平台RapidMiner上对K-近邻(KNN)、随机森林(RF)、支持向量机(SVM)和梯度提升决策树(GBDT)4种经典机器学习算法选取不同的分类特征进行分类实验.实验结果表明,较其他3种算法,GBDT算法可以在较短的时间内获得更好的分类效果.