论文部分内容阅读
根据采用晶闸管三相调压器控制变载荷电动机运行的特点,阐明了采用神经网络方法对该系统建模的必要性.基于带有回归单元的Elman神经网络,对变载荷三相异步电动机的晶闸管三相调压器系统进行了建模.采用一种带惯性项的动态反向传播学习算法,克服了通常的BP算法振荡和收敛速度慢的弱点,使变载荷电动机系统跟随负载变化对电动机实现调压控制.对Elman神经网络的结构运用方法,以及惯性项的动态反向传播学习算法做了较详细的介绍,对由晶闸管三相调压器构成的拖动系统建模所选向量参数进行了说明.实例表明,利用该方法迭代后的学习结果