基于生成对抗网络的无监督域适应分类模型

来源 :电子学报 | 被引量 : 0次 | 上传用户:fghngfhfg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsupervised Domain Adaptation classification model based on GAN,UDAG).该模型通过联合使用生成对抗网络和多核最大均值差异度量准则优化域间差异,并充分利用无监督对抗训练及监督分类训练之间的信息传递以学习源域分布和目标域分布
其他文献
传统的卷积神经网络使用池化层对信息进行降维操作,通常会造成信息损失,从而影响网络的表达能力.针对这一问题,使用参数池化层(Parameterized Pooling Layer)替代传统卷积神经网络中的池化层,提出参数池化卷积神经网络(Parameterized Pooling CNN,PPCNN).参数池化层在仅仅增加了少量网络参数的情况下,最大可能的保留了卷积神经网络中希望被保留下来的特征;同
针对频分双工(Frequency Division Duplexing,FDD)大规模多入多出(Multiple-Input Multiple-Output,MIMO)系统中现有信道状态信息(Channel State Information,CSI)反馈方法复
传统的PLL(Phase Locked Loop)电路受限于环路参数的选定,其相位噪声与抖动特性已经难以满足大阵列、高精度TDC(Time-to-Digital Converter)的应用需求.本文致力于PLL环路带