论文部分内容阅读
气体绝缘金属封闭开关设备(GIS)的状态影响电力系统运行的可靠性,而局部放电是设备潜伏性绝缘故障的重要表现之一。传统局部放电模式识别方法依赖专家经验选取局部放电特征,主观性强且不确定度高。针对这一问题,文中提出将深度学习技术引入局部放电模式识别领域,运用卷积神经网络及其扩展自编码网络提取局部放电信号特征,充分发挥自编码网络的特征抽取能力。同时,将所提取的特征与经典分类器进行衔接,有机结合传统机器学习方法与深度学习方法,实现局部放电信号的基本参数提取、统计特征计算与放电类型识别。实验结果表明,文中所提方法提