论文部分内容阅读
针对目前以移动最小二乘技术构造的无单元形函数需要大量的求逆运算,且在边界处无过点插值性质而给计算带来了困难的问题,以泰勒展开理论为基础,继承最小移动二乘法的高阶连续性,用Shepard插值实现"移动最小二乘法的由局部到整体区域的移动性"及"有限元法形函数过点插值性",旨在使无单元伽辽金法的形函数在满足高阶连续性的同时具有过点插值的性质,并避免了现有无单元伽辽金法形函数求解繁琐的缺点.