论文部分内容阅读
城市景观水体的叶绿素a含量可直接反映其水质。紫外-可见光谱方法可快速低廉反演叶绿素a的含量,但城市水体水深较浅、浊度较高,容易对该波段光谱产生干扰。采用实验室培养的螺旋藻水样和浊度水样的混合水样来模拟城市景观水体环境,并使用UV—2600分光光度计获取混合水样的吸光谱数据;对吸光谱数据分别建立一元线性回归模型、偏最小二乘算法(PLS)模型和BP神经网络模型,以寻找降低水体浊度干扰的办法,为水体水质评价提供可靠参考数据。结果显示,BP神经网络预测模型可以同时预测混合水样中叶绿素a的浓度和浊度的浓度值,